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Introduction

In this thesis we investigate particular types of so called martensitic microstructures ob-

served during the experiments on copper-aluminium-nickel shape memory alloy single

crystal. The reversible martensitic phase transition and related martensitic microstruc-

ture stand behind the all of interesting properties of the shape memory alloys—the

unique class of smart materials, which is a subject of intensive research in the last

years. We believe that the better understanding of the microstructure formation and

evolution contributes towards the further expansion of the shape memory alloys appli-

cations in industry as well as in a common life.

Our aim is to provide tools to treat microstructures which violate premises of the

widely adopted model of microstructures in equilibrium state developed by Ball and

James [4]. This model is intended to assess admissibility of given microstructure type

and to predict its parameters. However, there were experimentally observed microstruc-

tures, which are not admissible according to this classical model. To solve this issue

we propose a slight modification, which enable us to handle also these incompatible

microstructures.

Besides the equilibrium microstructure model, also the dynamical model of the mi-

crostructure evolution is constructed. Since we need to describe spontaneous evolution

of the microstructure without external loads applied, as occurring in experiments [19],

we have to develop the model at a faster time scale ([16]) than most of others. This

leads us to incorporate the rate-dependent dissipation mechanism into the model.

1





Chapter 1

Introduction to Martensitic Phase

Transition

This chapter summarises the mathematical description of the reversible martensitic

transition theory developed particularly by Ball and James [4]. It extends some parts

of author’s bachelor thesis [9].

1.1 Continuum Mechanics

Most of the theoretical framework used in this thesis is formulated in the terms of

continuum mechanics. Thus it is necessary to introduce some basics used in the context

of the martensitic transition.

1.1.1 Deformation, Deformation Gradient

The essential terms we are using are the deformation and the deformation gradient.

Definition 1.1.1. A homeomorphism y: x → y(x) on Ω ⊂ R
n into Rn is called

deformation, if yi|G◦k ∈ C
(2)(G◦k), where G◦k are open connected sets (regions) in Rn and⋃r

k=1 Gk = Ω, r ∈ N. Further we require that det F(x) > 0 ∀ x ∈ G◦k . The matrix

F(x) = ∇y(x) is defined as

F(x) = ∇y(x) =


∂y1

∂x1

∂y1

∂x2
. . . ∂y1

∂xn

∂y2

∂x1

∂y2

∂x2
. . . ∂y2

∂xn

...
...

. . .
...

∂yn

∂x1

∂yn

∂x2
. . . ∂yn

∂xn

 for short: Fij =
∂yi

∂xj
. (1.1)

The matrix F(x) is called the deformation gradient.

3
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x

y

y(x)

Figure 1.1: Deformation of a body [6]

Let Ω be a subset of Rn representing a body before the deformation. Then, if x ∈ Ω is

a point of the body in reference configuration, the y(x) is the corresponding point of

the deformed body (see Fig. 1.1). Instead of the deformation y the displacement field

u(x) = y(x)− x (1.2)

is often used.

1.1.2 Local Properties of Deformation

If deformation gradient F(x) is continuous in a point x, it characterises the deformation

on the infinitesimal neighbourhood of this point, and

dy = F(x) dx (1.3)

holds.

Since the value of det F(x) is equal to the Jacobian of the deformation, it describes

a volume change of the neighbourhood of the point x. We can write

dṼ = (det F) dV , (1.4)

where dṼ stands for an infinitesimal volume of the deformed body, and dV denotes the

respective volume in the reference configuration (for clarity the arguments are omitted,

but keep in mind that in general all used quantities are functions of position in the

reference configuration).

Thereafter, the text is restricted to deformations in R3. For the volume of an

infinitesimal parallelepiped

dṼ = (dy1 × dy2)·dy3 (1.5)

(here, vectors dyi correspond to edges of given volume) we can derive formula (1.4)

using (1.3).
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An infinitesimal parallelogram of area dS̃, with normal ñ can be written as

dS̃ = ñ dS̃ = dy1 × dy2 . (1.6)

Analogously to (1.4), we obtain the formula for transformation of surface elements by

deformation y:

dS̃ = (det F)F−TdS . (1.7)

The deformation is called homogeneous, if the deformation gradient is independent

on x (i.e. F(x) is constant on body Ω). Then, the mapping y is an affine transformation:

y(x) = Fx + x0 F ∈ Rn,n, x0 ∈ Rn . (1.8)

Let the point x be a point of continuity of the deformation gradient. Then, we can

consider the deformation to be homogeneous on the infinitesimal neighbourhood of x.

As mentioned above, such deformation is an affine transform of the neighbourhood of

the point x. Every affine transform can be decomposed into pure stretch, a following

rotation, and a final translation by vector x0 from (1.8). This unique decomposition is

obtained by application of theorem 1.1.1 to the deformation gradient F.

Theorem 1.1.1 (Polar decomposition). Let F be a regular, real matrix; det F > 0.

Then, there exists a unique symmetric positive definite matrix U and an orthogonal

matrix R, det R = 1 (i.e. R is a proper rotation), such that

F = RU , (1.9)

where U =
√

FTF and R = FU−1.

The matrix U, often called the Bain matrix (tensor), represents just metric prop-

erties of the deformation on the neighbourhood of x. Rotation R and vector x0 (in

(1.8)) carry the information on the transformation of the neighbourhood as a whole.

1.1.3 Kinematic Compatibility of Gradients

Consider a deformation y defined on region Ω which is homogeneous on regions G ⊂ Ω

and GC = Ω\G, where ∂G is a part of a sufficiently smooth hypersurface. Let us examine

the relation between the gradients F and G corresponding to the deformations y|G and

y|GC respectively.

Since the deformation is continuous, the surface ∂G has to transform equally “from

both sides” (see Fig. 1.2). Let z ∈ ∂G, n be a normal to ∂G in the point z. If T is a

tangent plane to ∂G at the point z (hence n is a normal of T ), for all vectors t from
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n

m

y = Fx + c

y = Gx + c

Figure 1.2: Compatibility of gradients [6]

the tangent space of T the relation Ft = Gt has to hold. This can be expressed by

the Hadamard jump condition

∃ a ∈ R3 : F−G = a⊗ n , (1.10)

where ⊗ denotes dyadic product defined below.

Definition 1.1.2. Binary operation ⊗ : Rn×Rn → R
n,n defined by formula

u⊗ v = uvT =


u1v1 u1v2 . . . u1vn

u2v1 u2v2 . . . u2vn

...
...

. . .
...

unv1 unv2 . . . unvn

 ∀ u,v ∈ Rn , (1.11)

is called the dyadic product of vectors u and v.

One can see that

rank (a⊗ b) ≤ 1 . (1.12)

Therefore, we can write the Hadamard condition equivalently as

rank(F−G) ≤ 1 . (1.13)

According to the findings above, ker(F−G) is a tangent space of ∂G at every point

in ∂G (supposing F 6= G). Since F and G are constant, the tangent space remain same

at all points in ∂G. Hence ∂G has to be a part of plane.

If constant matrices F and G are prescribed, a deformation y homogeneous on

some regions G,GC ∈ Ω with gradients F and G exists if and only if the Hadamard

condition (1.13) or (1.10) is fulfilled for some vectors a,n ∈ R3. Then, the surface,
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which separates G and GC, is a plane with normal n (after the deformation, the normal

changes, using (1.7), to (det F)F−Tn). Gradients F and G satisfying the Hadamard

condition are called compatible.

We need to extend the idea of compatibility to symmetric positive definite matrices

Ua and Ub, which come from the polar decomposition (see 1.1.1) of the corresponding

deformation gradients. The question is, if there exist rotations R1 and R2 such that

matrices F = R1Ua and G = R2Ub are compatible gradients. When

R1Ua −R2Ub = a⊗ n (1.14)

holds for some rotations, we call the matrices Ua and Ub compatible.

This redefinition of the compatibility for symmetric positive definite matrices is

more general. Thus, there is no simple criterion (like the Hadamard jump condition)

for this new compatibility. Some more complex criteria are mentioned in section 1.3.3.

1.2 Continuum Mechanics and Crystal Structure

Since this work deals with monocrystalline material, we need to introduce basic prop-

erties of crystalline solids into our description in the terms of the continuum mechanics.

Especially, the effects of a crystal lattice symmetries are important.

1.2.1 Crystal Lattice

For simplicity, in this section we are considering an ideal crystal, which is of infinite

size and has a periodic structure without defects. The characteristic property of such

ideal crystal is a repetition of some basic motif in the directions of crystallographic

axes. The motif can be asymmetric comprising number of atoms.

Consider three linearly independent vectors (e1, e2, e3) defining the elementary

translations in the crystallographic axes directions. Then the set

L(e1, e2, e3) = {µ1e1 + µ2e2 + µ3e3 | µi ∈ Z} . (1.15)

form a three-dimensional grid. By placing a selected motif at the all grid points the ideal

crystal is obtained. This grid is called the crystal lattice. Equivalently: The crystal

lattice is a set of points, which have identical and identically oriented neighbourhood.

The generating vectors are called lattice vectors or primitive basis.

The lattice direction is understood as a direction defined by two distinct lattice

points. Likewise, the lattice plane is understood as a plane defined by three affine

independent lattice points.
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e1

e2

f1

f2

Figure 1.3: Crystal lattice and lattice vectors [6]

1.2.2 Crystal Symmetries

It is apparent that two different triplets of vectors can generate identical lattices. See

example in Fig. 1.3 (in 2D), where the same lattice is generated by vectors (e1, e2)

as well as by vectors (f1, f2). Let us explore the relation between such triplets. The

following definition comes in useful for this.

Definition 1.2.1 (primitive unit cell). The primitive unit cell of a crystal lattice is a

parallelopiped defined by respective lattice vectors.

Let (e1, e2, e3) and (f1, f2, f3) be triplets such that

L(e1, e2, e3) = L(f1, f2, f3) . (1.16)

Then each vector in the first triplet must be a integral linear combination of vectors

from the second triplet:

ei = µijfj µij ∈ Z . (1.17)

This ensures that the set L(e1, e2, e3) is a subset of L(f1, f2, f3). To achieve an equality

in (1.16) one more condition has to be added. The necessary and sufficient condition

for the equality (1.16) is (1.17) along with the condition

|det(µij)| = 1 , (1.18)

where (µij) denotes a matrix in Z3,3 with coefficients µij . This tells us that primitive

unit cells of both lattices have the same volume. It is easy to see that the matrices

(µij) form a multiplicative group. This group is denoted S.

Another useful groups are the symmetry groups of the lattice. First, we must define

what is understood by the lattice symmetry.

Definition 1.2.2 (lattice symmetry). Lattice symmetry is an affine map on R3 into

R
3, which maps the lattice back to itself.
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For example, the elementary translations by lattice vectors are possible symmetries for

all lattices. It is essential to distinguish between the lattice symmetries and symmetries

of atoms spatial arrangement. Because of a possible asymmetry of the motif, the atoms

spatial arrangement adopts, in general, only the translational lattice symmetries.

From the text above, it follows that a regular linear map H is a symmetry of lattice

L(e1, e2, e3) if and only if

∃ (µij) ∈ S : Hei = µijej . (1.19)

The set of all lattice symmetries as well as the set of all regular linear maps forms a

group. Thus, we can define the group of all linear lattice symmetries (or the group of

matrices representing these symmetries):

G(ei) = G(e1, e2, e3) = {H ∈ R3,3 | ∃ (µij) ∈ S : Hei = µijej} . (1.20)

A more important group than the space group G(ei) is its finite subgroup containing

only proper rotations:

L(ei) = L(e1, e2, e3) = {Q ∈ G(ei) | Q ∈ SO(3)} . (1.21)

This group is called the Laue group of crystal lattice. One can show that there exist

only 11 distinct Laue groups. These are further divided into 7 known crystal systems

(for further details see [22]).

Since there is a possibility that no primitive unit cell has the same symmetries as a

whole lattice, it is convenient to define a conventional unit cell. The conventional unit

cell respects lattice symmetries and it is the smallest such cell. Type of the conventional

cell determines the lattice crystal system. Volume of the conventional cell is a multiple

of the primitive cell volume.

1.2.3 Cauchy–Born Hypothesis

Here we introduce a theorem that links continuum mechanics to crystallography and

vice versa. It is called the Cauchy–Born hypothesis, see [6] for another formulation.

Theorem 1.2.1 (Cauchy–Born). Let a crystal occupy region a Ω ⊂ R3 in the reference

configuration, and let y be a deformation on Ω. For all x ∈ Ω consider crystal lattice

in the neighbourhood of x. The lattice is generated by vectors e0
1(x), e0

2(x), e0
3(x). Let

e1(x), e2(x), e3(x) denote corresponding vectors generating a lattice of the deformed

crystal in the neighbourhood of y(x). Then, for these vectors the following formula

holds:

ei(x) = F(x) e0
i (x) , (1.22)
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e1

e2

e0
1

e0
2

x

y

y(x)

e1 = Fe0

1

e2 = Fe0

2

e3 = Fe0

3

F(x) = ∇y(x)

Figure 1.4: Cauchy–Born hypothesis [23]

where F(x) = ∇y(x) is a gradient of the deformation at the point x. Conversely, if

two triplets of vectors generating distinct lattices are given, then equation (1.22) defines

deformation y(x) = Fx, which maps the first lattice to the second one.

See Fig. 1.4 for a schematic outline of the idea. It means that the primitive unit cell

of the deformed lattice is an image of the original unit cell under the linear mapping

F(x).

1.3 Reversible Martensitic Transition

The martensitic transition is a first-order, solid to solid phase transition. During this

transition, the latent heat is released and the lattice parameters and first derivatives

of thermodynamic potentials change discontinuously.

The main property of the martensitic transition is that it is diffusionless. There

are no long distance transfers of atoms; the character of the chemical bonds in the

crystal does not change. In the case of the reversible transition, no defects occur in

lattice. Also, almost no volume change takes place during the transition. Hence, the

reverse transformation can proceed in a similar manner. During the martensitic phase

transition the lattice parameters are slightly changed. According to the Cauchy–Born

hypothesis 1.2.1, this leads to well defined macroscopic deformation. Parameters of the

deformation are determined from the material parameters.
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The transition process can be invoked by a temperature change or by mechanical

loading. This work focuses on thermally induced transitions. The high temperature

phase is called austenite and the low temperature phase is called martensite. Regarding

the transitions under investigation, the Laue group of martensite has to be a proper

subgroup of the Laue group of austenite (see [7]).

1.3.1 Mathematical Description of Transition

We can represent the reversible martensitic phase transition as a crystal body defor-

mation in the sense of definition 1.1.1. The transition properties mentioned above

enable us to do this. The sets G◦k from definition 1.1.1 correspond to the regions in

material, which are transformed to regions with uniform lattice. On these regions the

deformation is homogeneous.

As a reference configuration we choose the crystal in the austenite phase. An

arbitrary state of the crystal after the phase transition can be then interpreted as a

deformation y of the original state.

Let (e0
1, e

0
2, e

0
3) be vectors generating crystal the lattice in region G◦k of the reference

configuration and let (e1, e2, e3) be respective lattice vectors in the corresponding region

of the transformed crystal. According to the Cauchy–Born hypothesis (see 1.2.1),

mapping F defined by relation

ei = Fke0
i (1.23)

is the gradient of deformation y on region G◦k .

Gradients Fk define deformation on individual regions G◦k up to translations, which

are determined from the requirement of continuity of resulting deformation.

Within the scope of continuum mechanics the phase transition of region Ω is fully

described by a finite set of compatible gradients and corresponding regions. Admissible

configurations are limited by material constants and by the compatibility conditions

from section 1.1.3.

Regarding the condition on martensite symmetries noted at beginning of this sec-

tion, possible deformation gradients are restricted to a sufficiently small neighbourhood

of identity such that the Laue group of deformed lattice is a proper subgroup of the

Laue group of original lattice. Such neighbourhood is called the Ericksen–Pitteri neigh-

bourhood. An rigorous definition can be found in [6].

Deformation gradients on regions, which stay in austenite, have a form of pure

rotation (lattice can be rotated, but the lattice parameters do not change). Gradients

belonging to martensite regions have a nontrivial polar decomposition (see 1.1.1). Thus,

the positive definite part U is different from identity the matrix. If two gradients have
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Austenite Martensite

a0

a0

a0

a

a

a

aa
a c

c

c

Figure 1.5: Variants of martensite (cubic austenite, tetragonal martensite) [6]

the same positive definite parts, the corresponding lattices are mutually rotated lattices

of identical parameters; converse does not hold. We call the lattices, which are up to

rotation identical, equivalent.

1.3.2 Variants of Martensite

Thanks to the higher symmetry of austenite we can obtain (by distinct, small deforma-

tions from the Ericksen–Pitteri neighbourhood) a set of distinct but equivalent lattices,

which are “far” from each other. This means that the rotations mapping these lattices

one to another are large—far from identity. These lattices correspond to different

variants of martensite. See example in Fig. 1.5, where the transformation from cubic

to tetragonal crystal system is illustrated. From the cubic austenite, three distinct

variants of martensite are obtained.

Thus we identify the individual variants with Bain matrices U from the polar

decomposition 1.1.1 of respective deformation gradients.

Let matrix U be one of the variants of martensite. It holds (see [10]) that the set

M of all possible variants can be constructed as

M = {QTUQ | Q ∈ LA} , (1.24)

where LA is the Laue group of austenite. Hence, every two variants of martensite are

similar with similarity transformation from LA. The number of elements inM, i.e. the

number n of possible martensite variants is equal to a quotient of group orders LA and

LM :

n =
|LA|
|LM |

, (1.25)

where LM denotes the Laue group of martensite.

1.3.3 Twins, Twinning Systems

If deformation gradients corresponding to distinct variants of martensite are compati-

ble, various regions of the material can transform to these different variants. See the
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a)

b) c)

d)

a0

a0

a

a

cc

Figure 1.6: Twinning system (a—austenite; b, c—variants of martensite; d—resulting
deformation) [6]

example of such deformation in Fig. 1.6. Recall that the interfaces between homoge-

neously deformed regions are necessarily planar (see 1.1.3).

In the section 1.1.3 a more general compatibility condition for positive definite

matrices was formulated in the following form:

∃R1,R2 ∈ R3,3,a,n ∈ R3 : R1Ua −R2Ub = a⊗ n . (1.26)

This is exactly the condition, which tells us, if two given variants of martensite can

create the system of martensite–martensite interfaces from Fig. 1.6 (d).

Such variants we call twins, the respective system of transformed regions is called

a twinning system. The main twinning systems usually distinguished in literature are:

Type I twins The interface is a lattice plane.

Type II twins Vector a is a lattice direction.

Compound twins Vector a is a lattice direction and the interface is a lattice plane.

In the case of the cubic to monoclinic transition the fourth possible type can appear,

where neither vector a is a lattice direction nor the interface is a lattice plane, but such

a case is rather rare. The types differ in range of mechanical properties.

Let Ua and Ub be Bain matrices representing two different variants of martensite.

According to the definition, two rotations—R1, R2—and two vectors—n, a—such
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that Hadamard condition (1.26) holds must be found to decide on compatibility of the

variants. Or reversely, a nonexistence of these elements must be proved.

Multiplying the equation (1.26) by matrix RT
2 from the left we get

R̃Ua −Ub = ã⊗ n , (1.27)

where

R̃ = RT
2R1 , (1.28a)

ã = RT
2a . (1.28b)

Vector n does not change. The solution of the new equation (1.27) represents a whole

class of solutions of the original equation (1.26); one of the rotations in (1.26) can

be chosen arbitrarily, and then the second one and the vector a are determined from

(1.28).

The following theorem ([6]) gives an exhaustive answer to our question of solvability

of (1.27), but it is quite complicated.

Theorem 1.3.1 (Ball, James). Let Ua and Ub be positive definite matrices. Denote

C = U−1
b U2

a U−1
b , (1.29)

let λ1 ≤ λ2 ≤ λ3 be the eigenvalues of C.

Then Ua and Ub are compatible if and only if C 6= I and λ2 = 1. Further, if Ua

and Ub are compatible, the equation (1.27) has exactly two solutions (R̃1, ã1,n1) and

(R̃2, ã2,n2). Where

ãi = ρ

√λ3(1− λ1)
λ3 − λ1

e1 + (−1)i

√
λ1(λ3 − 1)
λ3 − λ1

e3

 , (1.30a)

ni =
√
λ3 −

√
λ1

ρ
√
λ3 − λ1

(
−
√

1− λ1 Uae1 + (−1)i
√
λ3 − 1 Uae3

)
. (1.30b)

Here ej are eigenvectors corresponding to the eigenvalues λj and ρ is a normalising

constant for vector n. Matrices R̃1 and R̃2 are determined from (1.27) substituting

respective solution.

Recall that every two variants satisfy similarity relation Ub = QTUaQ for at least

one Q ∈ LA (if variants are different, then necessarily Q /∈ LM holds). If Q is a

180◦ rotation, we can introduce the simpler theorem 1.3.2 for such variants (see [10]).

Theorem 1.3.2 (Mallard law). Let Ua and Ub be distinct variants of martensite. Let

Q ∈ LA be a 180◦ rotation such that

Ub = QTUaQ . (1.31)
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Let p be a unit vector defining the axis of the rotation. Then Ua and Ub are compatible

and equation (1.27) has exactly two solutions:

n1 = p , ã1 = 2

(
U−1

b p
|U−1

b p|2
−Ubp

)
, (1.32a)

n2 =
2
ρ

(
p−

U2
bp

|Uap|2

)
, ã2 = ρUap , (1.32b)

where ρ is a normalising constant for vector n2. Matrices R̃1 and R̃2 are determined

from (1.27) substituting respective solution.

The theorem says that the loss of a 180◦ rotational symmetry during the transition

from austenite to martensite gives a rise to possibility of a twinning system creation.

It also gives all parameters of this system. In the case of transformations from cubic

crystal system the 180◦ rotational symmetry is always lost. Since austenite is cubic in

almost all shape memory alloys, it is not needed to use general theorem 1.3.1 too often.

Using the simple theorem 1.3.2 we are able to decide on type of the twinning system

immediately. Consider solution (1.32a). The axis p is a symmetry element of austenite

lattice. Hence, normal n1 = p is a lattice direction in austenite. Then the plane

determined by this normal is a lattice plane in austenite. Planes and directions are

deformed along with the lattice, therefore the interface after the deformation is a lattice

plane in martensite. Thus the solution (1.32a) describes type I twinning system.

The case of the second solution (1.32b) is similar. Since p is a lattice direction in

austenite, the ρR2Ubp = R2ã2 = a2 is a lattice direction in martensite. Then the

solution (1.32b) describes twinning system of type II.

Recall that equation (1.27) has none or exactly two solutions. So, if two rotations

Q1 and Q2 satisfy premisses of the theorem 1.3.2, the obtained solutions must be iden-

tical. Since Q1 and Q2 are distinct 180◦ rotations, they must have distinct rotational

axes. Thus the type I solution substituting Q1 has to be equal to the type II solution

substituting Q2 and same case for the second pair of solutions.

The preceding means that the obtained solution is of compound type. Further, at

most two such rotations can exist, otherwise it leads to contradiction to the theorem.

1.4 Martensitic Microstructure

The question for this section is what structure of martensite variants and austenite

regions appears in material under given temperature and boundary conditions. Intro-

duced theory of Ball and James is in more detail described in [6].
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1.4.1 Transformation Energy

We assess the admissibility of particular structure in terms of energy. As a suitable

thermodynamic potential the Helmholtz free energy—W appears, which equals to the

strain energy for the isothermal processes. Since the transition under consideration is

“slow”, it can be regarded as isothermal.

Free energy and the corresponding free energy density (w) are considered to be

functions of temperature θ and Bain matrix U. Further, we suppose that the free

energy depends only on lattice parameters and not on the particular arrangement of

atoms. Thus, function w(θ,U) has to respect lattice symmetries.

By applying rotation Q from the austenite Laue group LA to the austenite lattice

we get the same lattice. Thus free energy of deformations y(x) and ỹ(x) = y(Qx)

must equal. If F and U are, respectively, gradient and Bain matrix of the deformation

y, then FQ and Ũ are corresponding quantities of the deformation ỹ (the chain rule

for composite function differentiation is used). According to theorem 1.1.1

Ũ =
√

(FQ)T(FQ) =
√

QTFTFQ = QT
√

FTFQ = QTUQ . (1.33)

The last but one equality results from the uniqueness of the square root operator. So

the free energy has to satisfy condition:

w(θ,U) = w(θ,QTUQ) ∀Q ∈ LA . (1.34)

Therefrom and from (1.24) an important fact, that all variants of martensite are ener-

getically equivalent, follows.

More features of the free energy function can be obtained from the principles of ther-

modynamics. Stable states of the thermodynamical equilibrium correspond to minima

of thermodynamic potentials. In section 1.3 it is mentioned that austenite is stable at

high temperature, whereas martensite is stable phase at low temperature. Hence, at

fixed high temperature the free energy w(θ,U) has a minimum in U = I. At fixed low

temperature the minima are in U = Ui, i = 1, . . . , n, where Ui are different variants

of martensite.

Thanks to the continuous dependence of the free energy on temperature there exists

a transformation temperature1)—θT —at which

w(θT , I) = w(θT ,Ua) = · · · = w(θT ,Un) (1.35)

holds.

1)This notation is quite misleading, since the transformation temperature is not the temperature
at which the transformation starts. Energetic barriers separating minima of the free energy cause
hysteretic behaviour of material.
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In sum:
w(θ,U) ≥ w(θ, I) ∀ θ > θT ,

w(θ,U) ≥ w(θ, I) = w(θ,Ui) θ = θT ,

w(θ,U) ≥ w(θ,Ui) ∀ θ < θT ,

(1.36)

for all admissible Bain matrices U and for all i = 1, 2, . . . , n, where n is a number of

martensite variants.

1.4.2 Model

Here we suppose that every stable structure minimises the free energy of the trans-

formed region. So we are looking for a deformation y(x) satisfying the boundary

conditions and minimising integral

W (θ,y) =
∫

Ω
w(θ,U(y(x))) dx . (1.37)

Unfortunately, according to [4] this variational problem has no solution for general

boundary conditions. In that case, there exists a finite infimum of function W (θ, ·),
which cannot be reached by any deformation y satisfying boundary conditions. But

with admissible deformations it is possible to approach arbitrarily close to that infimum.

For appropriate boundary conditions, the integral (1.37) can be minimised. Thanks

to (1.36), the arrangement of minima of function w(θ, ·) is known for each fixed tem-

perature. At the temperature θ > θT the free energy density is pointwise minimised

by identity (i.e. material remains in the reference austenite state).

Let θ < θT . Consider deformation y such that corresponding gradient U(x) at ev-

ery point represents one of the mutually compatible variants of martensite. Since this

deformation minimises the integrand, it also minimises the whole integral. But the re-

sulting structure must fit the boundary conditions. Failing which, only the minimising

sequence of deformations—y(n)—can be constructed. Such sequence satisfies:

inf
y
W (θ,y) = lim

n→∞
W (θ,y(n)) , (1.38)

where y and every member of the sequence fulfil given boundary conditions. The

meaning of these sequencies is explained later.

1.4.3 Austenite–martensite Interface

Within some certain temperature range the material can stay both in austenite and

in martensite (external loading is not considered). That is because of the thermal

hysteresis mentioned above. So it may become that after transition one part of crystal
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Figure 1.7: Minimising sequence of deformations [6]

transforms to martensite and another rests in austenite. How the interface between

these two parts looks like?

If austenite were compatible with martensite, it would be a simple interface like in

case of twins. Denote Ua the particular variant of martensite. Setting Ub = I and

using theorem 1.3.1 one can see that Ua is compatible with austenite if and only if

the middle eigenvalue of C = U2
a is equal to one. Since Bain matrices are positive

definite this condition holds if and only if the middle eigenvalue of the original Bain

matrix Ua is equal to one. But the Bain matrices corresponding to possible martensite

variants are determined by lattice parameters. Hence, the ability of forming simple

austenite–martensite interfaces strongly depends on the material properties.

An absolute majority of known materials lacks this property.2) Nevertheless, the

austenite–martensite interfaces exist also in common materials, but there are not as

simple as in the case of direct compatibility between austenite and martensite.

To solve the problem the model from the paragraph 1.4.2 can be used. The part

of crystal in martensite is considered as a region Ω. As a boundary condition the

deformation gradient I representing austenite is prescribed. In general, under the given

conditions there is no deformation minimising the integral (1.37). But the minimising

sequence y(n) is guaranteed to exist.

Let us construct such sequence. Let A = R1Ua and B = R2Ub be suitable,

2)It is possible to fabricate materials fulfilling this fine condition. See [11] for details.
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compatible martensite variants. Let λ be a such number that convex combination

λA + (1− λ)B is a gradient compatible with austenite. Now

A−B = a⊗ n , (1.39a)

λA + (1− λ)B− I = b⊗m (1.39b)

holds. Define deformation y(n) according to Fig. 1.7. Since neither gradient A nor

B are compatible with austenite, they must be separated from the austenite with

interpolation layer of width proportional to 1
n . This layer ensures continuity of the

deformation y(n). Within the interpolation layer the deformation gradient does not

correspond to any variant of martensite, so the free energy is not minimised here. The

plane with normal m separating austenite from the twins is called the habit plane.

In [6] it is shown that the constructed sequence is a minimising sequence of the

integral (1.37). The essential part of this proof is a compatibility of so called macro-

scopic gradient λA + (1 − λ)B and austenite. If it were not for this compatibility,

the deformation gradient would diverge in the interpolation layer, and the resulting

macroscopic deformation would be discontinuous.

Thus, the model allows the infinitely fine laminar structure to arise at the austenite–

martensite interface. The volume fraction of one variant in the twining system is λ,

and for the second variant it is 1− λ.

Indeed, such fine structures are observed on these interfaces. Of course, the real

laminates are not infinitely fine, but this simple model cannot catch the length scale.3)

The obtained fine system of interfaces is called the martensitic microstructure. For

an example of microstructure see Fig. 1.8, where the austenite–martensite interface is

shown.

Let us return to equation (1.39b). For two compatible martensite variants the

number λ and the vectors b, m solving equation (1.39a) are supposed to exist. But

it is possible to find them for all combinations of martensite variants? Can every two

variants form simple laminar microstructure on the austenite–martensite interface?

Answers are given by following theorem.

Theorem 1.4.1 (Ball, James). Let Ua, Ub be two different variants of martensite,

and let (R̃, ã,n) be a solution of equation (1.27). Denote

δ = ã·Ub(U2
b − I)−1n and η = tr U2

b − det U2
b − 2 +

|ã|2

2δ
. (1.40)

3)This can be corrected by adding an additional term to integral (1.37) representing “interfacial
energy” depending on number of interfaces and their surface area. Such modified model is often in
agreement with experimental results, but it is difficult to handle. The simple model presented in this
work is sufficient for investigation of basic properties of martensitic microstructures.
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0.5 mm

Figure 1.8: Austenite–martensite interface (Cu-Al-Ni alloy, scanning electron mi-
croscopy. Photo by DMAT FNSPE.)

Equation

Q(λR̃Ua + (1− λ)Ub)− I = b⊗m (1.41)

has a solution if and only if

δ ≤ −2 and η ≥ 0 . (1.42)

If the condition above is satisfied, then

λ =
1
2

(
1−

√
1 +

2
δ

)
. (1.43)

Further denote

C = (Ub + λn⊗ ã) (Ub + λã⊗ n) (1.44)

and λ1 ≤ λ2 ≤ λ3 the eigenvalues of matrix C. The equation (1.41) has exactly two

solutions (Q1,b1,m1) and (Q2,b2,m2):

bi = ρ

√λ3(1− λ1)
λ3 − λ1

e1 + (−1)i

√
λ1(λ3 − 1)
λ3 − λ1

e3

 , (1.45a)

mi =
√
λ3 −

√
λ1

ρ
√
λ3 − λ1

(
−
√

1− λ1 e1 + (−1)i
√
λ3 − 1 e3

)
. (1.45b)

Here ej are eigenvectors corresponding to the eigenvalues λj and ρ is a normalising

constant for vector m. Matrices Q1 and Q2 are determined from (1.41) substituting

respective solution.

If δ < −2, the second pair of solutions is obtained substituting 1− λ for λ.
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Relations between equations (1.26), (1.41) and equations (1.39) are clear:

A = QR̃Ua , (1.46a)

B = QUb , (1.46b)

a = Qã . (1.46c)

Thus, two suitable variants of martensite can form up to eight different microstruc-

tures of type from Fig. 1.8. For each of two solutions of equation (1.27) the four

solutions of (1.41) are obtained via the theorem 1.4.1. So, up to eight solutions of

system (1.39) can be found.

The same process can be used to construct even much more complicated microstruc-

tures (or, more precisely, minimising sequencies). In [6] it is shown that necessary and

sufficient condition for sequence of deformations to be a minimising sequence of inte-

gral (1.37) is the compatibility of respective macroscopic gradients. Of course, outside

interpolation layers the gradients are supposed to be pointwise minimisers of the free

energy (i.e. these gradients must correspond to austenite or to martensite variants).

Several examples of microstructures are thoroughly analysed in [10].

1.5 Martensitic Transition in CuAlNi

We deal with the microstructures in copper–(14.3%)aluminium–(4.2%)nickel (CuAlNi)

single crystal. Thus, let us investigate the martensitic transition in CuAlNi more closely

using the theory introduced in previous sections.

1.5.1 Symmetries, Variants of Martensite

During the transition, the cubic lattice of austenite transforms into the orthorhombic

lattice of martensite. Cubic primitive unit cell of the austenite lattice changes to

tetragonal prism with a rhombic base.

But this prism does not reflect all symmetries of the orthorhombic lattice. Thus,

as a conventional unit cell of the martensitic lattice a base-centered cell with the shape

of a rectangular parallelepiped is used. The edges of the base of the parallelepiped

correspond to the diagonals of the four rhombi lying side by side. See the illustration

in Fig. 1.9.

The austenite state is chosen to be a reference configuration. The axes of the

coordinate system are aligned with the edges of austenite primitive unit cell. In this
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Austenite Martensite

Figure 1.9: Conventional unit cell (full line) in austenite and martensite

configuration, the Bain matrix of the first martensite variant can be written as

U =


Eb 0 0

0 Ed −Es

0 −Es Ed

 , (1.47)

where Eb, Ed, and Es are three material constants:

Eb = 0.91542 , Ed = 1.04370 , Es = 0.02002 . (1.48)

The cubic lattice Laue group consists of 24 elements, while the Laue group of

orthorhombic lattice comprises only 4 elements (identity and three 180◦ rotations).

According to (1.25) six variants of martensite exist in CuAlNi. Bain matrices for all

possible variants are obtained using (1.47) and (1.24). We are following the numbering

from [18]:

U1 =


Eb 0 0

0 Ed −Es

0 −Es Ed

 , U2 =


Eb 0 0

0 Ed Es

0 Es Ed

 ,

U3 =


Ed 0 −Es

0 Eb 0

−Es 0 Ed

 , U4 =


Ed 0 Es

0 Eb 0

Es 0 Ed

 , (1.49)

U5 =


Ed −Es 0

−Es Ed 0

0 0 Eb

 , U6 =


Ed Es 0

Es Ed 0

0 0 Eb

 .
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rot. QA9 QA10 QA11 QA12 QA13 QA14 QA15 QA16 QA17

axis i1 + i2 i1 − i2 i1 + i3 i1 − i3 i3 + i2 i3 − i2 i1 i2 i3

Table 1.1: 180◦ rotations in Laue group of the cubic lattice. Here, i1, i2, and i3 denote
standard basis vectors.

Ub�Ua U1 U2 U3 U4 U5 U6

U1 – QA16, QA17 QA10 QA9 QA12 QA11

U2 – QA9 QA10 QA11 QA12

U3 – QA15, QA17 QA14 QA13

U4 – QA13 QA14

U5 – QA15, QA16

U6 –

Table 1.2: Rotations satisfying premises of theorem 1.3.2 for variants Ua and Ub

Further, the list of 180◦rotations comprised in austenite Laue group becomes useful.

See the listing in Tab. 1.1. These rotations maps one martensite variant to another

according to (1.31). The numbering is borrowed from [10].

1.5.2 Twinning Systems

Tab. 1.2 describes relations between 180◦ rotations listed above and the martensite

variants. For variants Ua and Ub the rotation Q from the table satisfies the similarity

condition Ub = QTUaQ.

Since for every two variants there is a rotation fulfilling the condition, the theorem

1.3.2 can be used to describe all possible twinning systems in CuAlNi.

Tab. 1.2 and theorem 1.3.2 imply that every two variants are compatible and can

create a twinning system. For pairs U1 : U2, U3 : U4, and U5 : U6 there exist two

distinct rotations mapping the variants one to another, thus this pairs form twinning

systems of the compound type. All other combinations can create either the type I or

type II system depending on chosen solution from the theorem.

Altogether, 30 distinct twinning systems exist in CuAlNi (12 systems of type I, 12

systems of type II, and 6 systems of the compound type).

1.5.3 Austenite–martensite Interface

In 1.4.3 it is shown that simple interface between austenite and single variant martensite

is admissible if and only if the middle eigenvalue of the corresponding Bain matrix is

equal to one. But that is not true in CuAlNi. For the given material the eigenvalues
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are λ1 = 0.91542, λ2 = 1.02368, and λ3 = 1.06372. The eigenvalues are the same for

all variants of martensite due to the similarity of the Bain matrices.

In such case, the second simplest interface allowed by the model is a simple laminar

structure showed in Fig. 1.7. This structure can be composed of any two variants

creating a twinning system satisfying conditions (1.42). Then the theorem 1.4.1 gives

all parameters of such structure (volume fractions of individual variants, orientation of

variants with respect to austenite, and habit plane orientation).

By applying theorem 1.4.1 to all possible combinations of martensite variants we

found out that the twinning systems of the compound type cannot form such austenite–

martensite interface. For arbitrary system of type I or type II the theorem gives four

distinct solutions to the compatibility equation (1.41). Thus there are 24 × 4 = 96

possible austenite–martensite interfaces from Fig. 1.7 in CuAlNi.

In this thesis we will use the following simple notation for these interfaces. Every

interface is identified by five integers (A,B,C,D,E). The first two numbers (A, B)

stand for the martensite variants involved and they range from 1 to 6. The other

numbers equal either 1 or 2. Number C identifies solution from the theorem 1.3.2,

thus it identifies the twinning system type (C = 1 for type I and C = 2 for type II).

The fourth number D determines a volume fraction of the variant UA (if the volume

fraction is less than 0.5, then D = 1, D = 2 otherwise). The last number E refers to a

solution number in theorem 1.4.1.

There is a little ambiguity in the notation since the martensite variants numbers

can be swapped. So one physical interface can be described by two different quintuples.

For example, the austenite–martensite interface comprising the type II twinning

system of variants U1 with volume fraction λ and U3 with volume fraction 1 − λ

corresponding to the second solution from the theorem 1.4.1 is denoted as (1, 3, 2, 1, 2).

It can be also denoted as (3, 1, 2, 2, 2), however.



Chapter 2

Analysis and Modelling of

Incompatible Microstructures

In the first section of this chapter the introduced classical theory of the reversible

martensitic phase transition is applied to analyse compatibility and to identify marten-

site variants involved in two particular types of microstructure observed experimentally

in CuAlNi single crystal. It is shown that so called lambda and X microstructure (first

reported in [5]) do not satisfy premises of the classical theory exactly. Thus, in the

next section a little modification to the classical theory is proposed and the whole

procedure of incompatible microstructures analysis according to the new theory is de-

veloped. The last section focuses on microstructure mobility and the model of observed

microstructures evolution is presented here.

2.1 Analysis of the Lambda and X Microstructures

Both microstructures were observed on the same specimen of CuAlNi single crystal.

And both microstructures were induced into the specimen by the same experimental

procedure. First, the specimen was forced to transform to the single variant martensite

by applying uniaxial compression. After removing the compression the specimen stayed

in martensite. In the corner of the specimen a small austenite phase nucleus was induced

by strong localised heating. Then the whole specimen was heated at the stress-free

state. The transition front formed and started moving through the specimen. When the

specimen was cooled down, the transition front stopped moving and the microstructure

at the interface between austenite and single variant martensite was observed. For the

detailed description of the experiment see [20].

25
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CHAPTER 2. ANALYSIS AND MODELLING OF INCOMPATIBLE

MICROSTRUCTURES

Face A Face B Face C Face D

LambdaX

Face A Face B Face C Face D

X

Figure 2.1: Lambda and X microstructures

face face normal dimensions [mm]

A, C (−0.7218702 −0.6919781 −0.0083517) 15.07×4.70
B, D (0.6918220 −0.7220554 −0.0042752) 15.07×4.56

Table 2.1: Specimen parameters in austenite

The specimen is a rectangular parallelepiped. For the face normal orientations and

dimensions see table Tab. 2.1. The simple illustration of the microstructures and the

face naming convention can be seen in Fig. 2.1.

The X microstructure and the lambda microstructure are very similar. Both have

a shape of the letter X and consist of two mutually intersecting habit planes separating

austenite from twinned regions of martensite (see 1.4.3) and another pair of mutu-

ally intersecting interfaces separating these twinned regions from the single variant of

martensite.

The lambda microstructure differs from the X microstructure in one of the interfaces

between twinned martensite and single variant martensite. Whereas in the case of

the X microstructure both martensite–twinned martensite interfaces are parallel (or

almost parallel) to the twinning planes of corresponding twinned regions, in the lambda

microstructure one of the martensite–twinned martensite interfaces is not. Thus, in

the lambda microstructure there is a interface between twinned martensite and single

variant martensite, which is similar to a common austenite–martensite interface from

Fig. 1.7.

2.1.1 The Lambda Microstructure

The lambda microstructure separating the austenite region from the single variant

martensite region is sketched in Fig. 2.2. Four variants of martensite denoted as A,

B, C, and D are involved. The interface between the {A:B} twinning system and
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Figure 2.2: Lambda microstructure

single variant B is a simple twinning plane. The other three interfaces comprise the

interpolation layer introduced in 1.4.3.

Compatibility Equations

With the notation taken from the Fig. 2.2 the compatibility equations (1.41) can be

directly rewritten for the {A:B}:I and {C:D}:I habit planes:

A−B = aAB ⊗ nAB ,

λABA + (1− λAB)B− I = bAB ⊗mAB ,

C−D = aCD ⊗ nCD ,

λCDC + (1− λCD)D− I = bCD ⊗mCD .

(2.1)

As mentioned above, the {A:B}:B interface is a simple twinning plane, therefore

the compatibility at this interface is ensured by the first equation in (2.1). The com-

patibility condition for the remaining interface {C:D}:B can be derived following the

scheme for ordinary habit plane:

λCDC + (1− λCD)D−B = bX ⊗mX . (2.2)
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Using relations (1.46) the conditions (2.1) and (2.2) can be rewritten in the form

used in the theorems 1.3.2 and 1.4.1:

RABUA −UB = ãAB ⊗ nAB ,

QAB(λABRABUA + (1− λAB)UB)− I = bAB ⊗mAB ,

RCDUC −UD = ãCD ⊗ nCD ,

QCD(λCDRCDUC + (1− λCD)UD)− I = bCD ⊗mCD

(2.3)

and

QCD(λCDRCDUC + (1− λCD)UD)−QABUB = bX ⊗mX . (2.4)

The first two and the second two equations in (2.3) are coupled only through the

equation (2.4). Thus, for given variants UA, UB, UC , and UD all solutions of (2.3) can

be easily found by solving them separately using theorem 1.4.1. Then, the solutions of

the whole system of equations (2.3) and (2.4) are obtained as solutions of (2.3) that

also satisfies (2.4). It was checked that there are no such solutions for any combination

of martensite variants.

We found out that the macroscopic deformation gradients in the lambda microstruc-

ture cannot be compatible and so that it should not exist according to the classical

theory. Since the lambda microstructure is experimentally observed we suppose that

the incompatibility is “small”. To prove this assumption we need some tool for mea-

suring the incompatibility of two deformation gradients and to predict the orientation

of the interface between these gradients.

Measuring the Gradient Incompatibility

First, the incompatibility measure of two deformation gradients over the given plane

is defined. Then, the interface is supposed to be a plane of minimal incompatibil-

ity measure. Finally, the incompatibility measure of two gradients is defined as the

incompatibility measure over this plane. Precise definitions follow.

Let F and G be two deformation gradients and let T be a plane with normal n.

Then, the incompatibility measure of gradients F and G over the plane T is defined as

sup
|t|=1
t⊥n

|Ft−Gt| = sup
|t|=1

t∈span(n)⊥

|Ft−Gt| . (2.5)

Notice that this value is in fact the operator norm of (F−G)| span(n)⊥ . Obviously, this

norm is equal to zero if and only if the gradients are compatible over the plane T (see

1.1.3).



2.1. ANALYSIS OF THE LAMBDA AND X MICROSTRUCTURES 29

Then, the incompatibility measure of F and G is

min
|n|=1

‖(F−G)| span(n)⊥‖ , (2.6)

and the minimal incompatibility plane is every plane with the normal

m = arg min
|n|=1

‖(F−G)| span(n)⊥‖ . (2.7)

The expression (2.7) is easily evaluated using the singular value decomposition

(SVD) of the matrix F − G. For details about SVD see [24]. SVD enable us to

write

F−G = σ1a1 ⊗ h1 + σ2a2 ⊗ h2 + σ3a3 ⊗ h3 , (2.8)

where {a1,a2,a3} and {h1,h2,h3} are the orthonormal sets and the numbers σi are

nonnegative, descending. The vectors hi are called the left singular vectors, the vectors

ai are the right singular vectors, and the numbers σi are called the singular values.

It is easy to see that

(a⊗ h)v = ahTv = a(h·v) , (2.9)

hence

(F−G)hi = σiai . (2.10)

So the SVD gives a picture of the matrix action on vectors. The operator norm of the

matrix is equal to its largest singular value—σ1. It can be also seen from (2.9) that

ai ⊗ hi is a rank-one matrix with the kernel span(hi)⊥ and range span(ai).

Now, it should be clear that the minimal incompatibility plane we are looking for

is the kernel of σ1a1 ⊗ h1, or more precisely, every plane with the normal h1. Because

this is the plane, where the largest singular value σ1 is “inactive”.

The operator norm of the restriction (F −G)| span(h1)⊥ and the sought incompati-

bility measure is the second largest singular value – σ2. In sum:

m = arg min
|n|=1

‖(F−G)| span(n)⊥‖ = h1 and (2.11)

sup
|t|=1

t∈span(n)⊥

|Ft−Gt| = ‖(F−G)| span(n)⊥‖ = σ2 . (2.12)

This approach is a generalisation into 3D of the “misfit” defined in the work [21]

for the 2D case. In 2D the situation is much more simpler, because the interface is a

one-dimensional line, and thus there is no need for searching for supremum in (2.5).
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angle � face A B C

(mAB,nCD) 50.1◦ 48.4◦

(mAB,mX) 17.5◦ 17.8◦

(mAB,mCD) 54.8◦ 55.8◦

(nAB,nCD) 4.1◦ 1.8◦

(nAB,mCD) 9.7◦ 7.8◦

(nAB,mX) 63.6◦ 64.6◦

(mAB,nAB) 46.2◦ 47.5◦

(mCD,nCD) 5.6◦ 85.2◦ 5.3◦

(mCD,mX) 72.7◦ 2.2◦ 72.4◦

(nCD,mX) 68.0◦ 80.6◦ 66.7◦

(mAB, edge) 67.8◦ 67.5◦

(nAB, edge) 66.6◦ 66.7◦

(mCD, edge) 55.5◦ 45.4◦ 57.6◦

(nCD, edge) 63.0◦ 51.6◦ 63.8◦

(mX , edge) 49.6◦ 47.5◦ 50.2◦

Table 2.2: The angles measured on the lambda microstructure

Identification of Martensite Variants

To identify the variants of martensite involved in the lambda microstructure we com-

pare the lambda microstructure geometry defined by the interfaces orientation obtained

from the compatibility equations with the experimentally observed geometry. It is sup-

posed that for the sought set of variants the theoretically predicted geometry best fits

the observed microstructure.

Since there are no exact solutions of the all compatibility equations (2.3) and (2.4)

for the lambda interface, we are looking for solutions of (2.3) only with the minimal in-

compatibility of the deformation gradient B and the macroscopic deformation gradient

of the {C:D} twinning system.

For the purpose of the geometry comparison mentioned above the angles between

visible interfaces in the particular faces of the specimen were measured. The obtained

data summarises Tab. 2.2. We denote (m,n)A the angle between the planes with

normals m and n projected into the face A. In the table the index of the face is

omitted. If there is a word “edge” in the place of the second normal, the notation

means the angle between the longer edge of the specimen and the intersection line of

the plane determined by the first normal and the given face.

In backtracking algorithm the angles (mAB,mCD)C , (mAB,nCD)C , (mAB,nAB)C ,

(mCD,nCD)C , and (mCD,nCD)B were compared against observation for all solutions

of (2.3) for all combinations of martensite variants. Within 5◦ tolerance only one

solution describing the lambda microstructure with incompatibility over the {C:D}:B
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angle � face A B C

∆(mAB,nCD) −2.7◦ −0.9◦

∆(mAB,mX) 0.9◦ 0.6◦

∆(mAB,mCD) −2.5◦ −3.5◦

∆(nAB,nCD) −1.2◦ 1.1◦

∆(nAB,mCD) −1.9◦ −0.0◦

∆(nAB,mX) −0.6◦ −1.6◦

∆(mAB,nAB) −1.6◦ −2.9◦

∆(mCD,nCD) −0.7◦ −3.7◦ −0.4◦

∆(mCD,mX) −1.9◦ 0.3◦ −1.6◦

∆(nCD,mX) −2.1◦ −1.6◦ −0.8◦

∆(mAB, edge) 0.9◦ 1.2◦

∆(nAB, edge) 0.1◦ −0.0◦

∆(mCD, edge) 3.4◦ 1.1◦ 1.3◦

∆(nCD, edge) 0.8◦ 0.4◦ 0.0◦

∆(mX , edge) 0.7◦ 1.5◦ 0.1◦

Table 2.3: Differences between the theoretically predicted and measured angles for the
lambda microstructure

interface less than 0.01 was found. For the other solutions within the given tolerance

the incompatibility measure was greater than 0.05.

Results

The {A:B}:I habit plane was identified as (2, 6, 2, 1, 1), and the {C:D}:I habit plane

was identified as (3, 6, 2, 1, 1). We are using notation introduced in 1.5.3. Thus, both

twinning systems are of the type II. The {A:B} system comprises variants 2 and 6,

where the second one is also the variant of the single variant region. The {C:D}
twinning system shares the variant 6, the second involved variant is variant number 3.

The incompatibility measure over the {C:D}:B interface is 0.0029. In the Tab. 2.3 the

differences between the theoretically predicted and measured angles are shown. The

normal mX is determined from (2.11).

In addition to deformation gradient incompatibility another issue arises. The nor-

mal vectors of predicted interfaces are not coplanar, which implies that the predicted

interfaces do not intersect in one line and thus they do not form the “X shape” exactly.

The situation is clear from the Fig. 2.3.

2.1.2 The X Microstructure

In the Fig. 2.4 the X microstructure is illustrated. It is simpler than the lambda

microstructure, since it consists of two ordinary twinning systems bordering austenite
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LambdaX X

Figure 2.3: The predicted geometry of the lambda and X microstructures (in austenite)
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Figure 2.4: X microstructure
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through the habit planes and single variant martensite through the simple twinning

planes. Thus, it comprises only three variants of martensite A, B, and C.

Compatibility Equations

The compatibility over the martensite–twinned martensite interfaces is guaranteed by

the twinning equations. Thus, the compatibility conditions for the X microstructure

contains only these twinning equations and pair of equations ensuring compatibility

with austenite:
A−B = aAB ⊗ nAB ,

λABA + (1− λAB)B− I = bAB ⊗mAB ,

C−B = aCB ⊗ nCB ,

λCBC + (1− λCB)B− I = bCB ⊗mCB .

(2.13)

Using (1.46) we can write:

RABUA −UB = ãAB ⊗ nAB ,

QAB(λABRABUA + (1− λAB)UB)− I = bAB ⊗mAB ,

RCBUC −UB = ãCB ⊗ nCB ,

QCB(λCBRCBUB + (1− λCB)UB)− I = bCB ⊗mCB .

(2.14)

Here, the rotations QAB and QCB coming from the polar decomposition of the same

deformation gradient B have to equal. But we distinguish them to “decouple” the pairs

of equations (2.14). Providing the condition

QAB = QCB (2.15)

the same type of the problem as for the lambda microstructure is obtained. First, the

equations (2.14) are solved separately using the theorem 1.4.1 and obtained solutions

are checked against the condition (2.15). Again, we found out that there is no solution

of given system for any combination of martensite variants.

Identification of Martensite Variants

Following the procedure used for the lambda microstructure the variants comprised

in the X microstructure were identified. The geometry of the all possible solutions of

(2.14) was compared to observations. Fixing B = QABUB, the {C:B}:B interface

remains the only incompatible interface in the X microstructure. Thus, the solution

fitting the observed geometry within given tolerance with the minimal incompatibility

over the {C:B}:B interface is chosen.
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angle � face A B C D

(mAB,nCB) 2.0◦ 2.0◦

(mAB,mCB) 44.0◦ 43.4◦

(nAB,nCB) 49.0◦ 49.0◦

(nAB,mCB) 3.0◦ 4.0◦

(mAB,nAB) 47.0◦ 46.9◦ 1.3◦

(mCB,nCB) 46.0◦ 0.0◦ 45.0◦

(mAB, edge) 67.0◦ 67.0◦ 48.2◦

(nAB, edge) 66.2◦ 65.5◦ 47.2◦

(mCB, edge) 69.4◦ 46.5◦ 68.9◦

(nCB, edge) 65.0◦ 46.6◦ 65.0◦

Table 2.4: The angles measured on the X microstructure

angle � face A B C D

∆(mAB,nCB) 2.5◦ 2.5◦

∆(mAB,mCB) −3.3◦ −2.7◦

∆(nAB,nCB) 0.7◦ 0.7◦

∆(nAB,mCB) 1.5◦ 0.5◦

∆(mAB,nAB) −1.8◦ −1.7◦ −0.8◦

∆(mCB,nCB) −0.8◦ 2.1◦ 0.2◦

∆(mAB, edge) 1.0◦ 1.0◦ −0.7◦

∆(nAB, edge) 0.6◦ 1.3◦ −1.9◦

∆(mCB, edge) 2.0◦ 1.0◦ 2.5◦

∆(nCB, edge) −1.6◦ −1.2◦ −1.6◦

Table 2.5: Differences between the theoretically predicted and measured angles for the
X microstructure

The angles measured on the X interface are listed in the Tab. 2.4. For the com-

parison with observations, in the backtracking algorithm the angles (mAB,mCB)A,

(mAB,nAB)A, (mCB,nCB)A, (mAB,nAB)D, and (mCB,nCB)B were chosen. As was

the case of the lambda microstructure, within the 5◦tolerance only one solution describ-

ing the X microstructure with the incompatibility over the {C:B}:B interface less than

0.01 was found. For the other solutions within the given tolerance the incompatibility

measure was greater than 0.05.

Results

The {A:B}:I habit plane was identified as (2, 6, 2, 1, 1) and the {C:B}:I habit plane

was identified as (4, 6, 2, 1, 1). Both twinning systems are of the type II. Notice that

the habit plane {A:B}:I and the corresponding twinning system are the same as in the

case of the lambda microstructure. And again, the common martensite variant is the
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variant number 6. The incompatibility measure over the {C:B}:B interface is 0.0036.

In the Tab. 2.5 the differences between the theoretically predicted and measured angles

are shown.

Although the {C:B}:B interface is chosen to be incompatible, instead of the mini-

mal incompatibility plane normal, for simplicity, the twinning plane normal is used for

geometry evaluations. Since the angle between these two normals is less than 3◦ , the

accuracy is sufficient for our purposes.

Even in the X microstructure the predicted interfaces do not intersect in one line.

See the Fig. 2.3 for the model of the predicted geometry. Since the real interfaces

must meet in one line to form the X microstructure, it leads to situation where even

compatible regions border over incompatible interface.

2.1.3 Conclusions

It was shown that both microstructures do not fulfil compatibility conditions required

by the classical theory introduced in the first chapter. Similar results are presented

in [17] for the X microstructure in Indium-Thallium undergoing cubic to tetragonal

martensitic transition. It means that the sequences of deformations corresponding to

observed microstructures are not the minimising sequences of the integral (1.37). This

breaks the main assumption of the introduced theory about the stable microstructures,

which, according to this theory, have to be global minimisers of the Helmholtz free

energy. This issue will be discussed in detail in the next section 2.2.

Though the microstructures do not satisfy basic premises of the classical theory,

the results of this theory were used to identify involved martensite variants. This is

possible as the incompatibility of the analysed microstructures is small. We suppose

that this small incompatibility is compensated by the presence of elastic strains. Thus,

the geometry of the real microstructure does not differ too much from the geometry

predicted by the classical theory providing releasing some compatibility conditions.

This claim is backed up with data listed in Tab. 2.3 and Tab. 2.5.

2.2 Modified Model of the Martensitic Microstructure

In the previous section we found out that the microstructures under investigation can-

not exist without presence of the elastic strains due to geometric incompatibility. There-

fore, the corresponding minimising sequences cannot be global minimisers of the stored

Helmholtz free energy (1.37).

We propose a slight modification of the classical theory. The stable microstructure

is supposed to be only a local minimiser of the stored free energy. Based on the results
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presented above we suppose that the geometry predicted by the classical theory lies

close to the sought local minimum of the total free energy.

To predict the microstructure geometry with the aid of this modified model the

local minimum of the total free energy with respect to chosen geometric parameters

must be found. This section describes the particular steps of this procedure.

2.2.1 Helmholtz Free Energy Estimation

To evaluate the total free energy of the specimen after the phase transition the whole

process is considered to be isothermal. Then, the free energy is totally differentiable

with respect to deformation. Thus, it does not depend on the transition path. This

property enables us to understand the martensitic transition as two independent pro-

cesses. The first is an inelastic transformation given by the transition strains which

yields to the discontinuous deformation over the incompatible interfaces. The second

one is the subsequent elastic deformation which ensures the continuity of the resulting

body. Hence, the total free energy A is a sum of the transformation energy W and the

free energy of the elastic deformation We:

A = W +We . (2.16)

The properties of the transformation energy W are summarised in 1.4.1. When

the specimen is set at the transition temperature θT , the transformation free energy

density w does not depend on the phase (see (1.36)). Thus, the transformation energy

W is function of specimen volume only and it is independent on the microstructure

parameters. Therefore, the total free energy A can be identified with the free energy of

the elastic deformation We only. For the isothermal case the free energy of the elastic

deformation is equal to the stored elastic energy Ee:

A = We = Ee . (2.17)

Elastic Deformation Evaluation

Evaluation of the elastic strain fields in a body is a subject of comprehensive general

theory of elasticity [14]. Only the basic concept is explained in this text.

To find the elastic strain field in the deformed body we need to know the elas-

tic constants Cijkl of the material (the stiffness tensor) and the boundary conditions.

The boundary conditions are generally given by the prescribed displacements or ap-

plied forces. Then, we can solve the problem of static equilibrium of the body for the

displacement field u(x).
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The principle of virtual work is used to obtain a variational formulation of the

problem, which is usually solved by the finite element method (FEM). In the regime of

small deformations (linear elasticity) the equations to solve are linear.

With the given displacement field the elastic energy Ee of the deformation is defined

as:

Ee =
1
2

∫
V
Cijklεijεkl dx , (2.18)

where the V denotes deformed volume and εij denotes the infinitesimal strain tensor

(Cauchy’s strain tensor), which is defined by following relation:

εij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (2.19)

Formulation of the Static Equilibrium Problem

As mentioned above, to obtain elastic strain field involved in the microstructure we need

to supply elastic constants of the material and set up the proper boundary conditions.

The elastic constants of the austenite and single variant martensite in CuAlNi were

measured using ultrasonic methods ([13]). Since we want to avoid strongly multiscale

computations, we consider the twinned regions homogeneous transforming according

to the corresponding macroscopic gradients. The “average” elastic constants of this

regions are obtained using homogenisation procedure described in [13].

To determine the boundary conditions let us sum up the abstract idea of the mi-

crostructure creation process. Let the specimen before the transition occupy the simply

connected volume Ω. The volume Ω consists of smaller volumes Gm (Gm are closed and

G◦m are disjoint), on which the deformations ym(x) = Fmx + bm are defined. These

affine transformations describe the phase transitions of the respective volumes. The

macroscopic gradient Fm = RmUm is upon the rotation Rm determined by the ma-

terial phase (or phase mixture in the case of the twinned regions). Rotations Rm and

the translation vectors bm are obtained from the conditions of compatibility with the

surrounding volumes. They remain arbitrary, in the case of incompatibility.

In general, the boundaries ∂Gm are not the compatibility planes, thus, after applying

the prescribed deformations, the original volume Ω breaks up into several parts. So,

after the transformation we end up with separated volumes Vm = ym(Gm). Now we are

looking for elastic deformation of each volume Vm, which puts these parts back together.

More precisely, we are looking for the set of displacement fields ũm(x) defined on Vm

such that the composition ỹ defined by

ỹ|Gm
= ym + ũm ◦ ym (2.20)

is a continuous deformation on the whole Ω.
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Now let us define the necessary boundary conditions. Consider adjoining incompat-

ible volumes Gm and Gn, and denote their common part of boundary ∂Gmn = Gm ∩Gn.

Let x be a point of ∂Gmn, then this point transforms to two different points x̃m = ym(x)

and x̃n = yn(x) in the transformed configuration. The requirement on the sought dis-

placement field is that these two points become one after the elastic deformation,

x̃m + ũm(x̃m) = x̃n + ũn(x̃n) . (2.21)

The relation between the points x̃m and x̃n is clear:

x̃n = (yn ◦ y−1
m )(x̃m) = FnF−1

m (x̃m − bm) + bn . (2.22)

Substituting to (2.21) we get

x̃m + ũm(x̃m) = FnF−1
m (x̃m − bm) + bn + ũn

(
FnF−1

m (x̃m − bm) + bn

)
. (2.23)

The relation above has to hold for an arbitrary x̃m ∈ ∂Vmn. Thus, the boundary

condition for the field um on the boundary part ∂Vmn = ym(∂Gmn) can be written as

ũm(x̃) = FnF−1
m (x̃− bm) + bn + ũn

(
FnF−1

m (x̃− bm) + bn

)
− x̃ ∀ x̃ ∈ ∂Vmn . (2.24)

Analogously, the displacements for the other incompatible boundaries are pre-

scribed. Notice that the condition on the boundary part ∂Vmn is equivalent to the

condition on the part ∂Vnm, hence, it is sufficient to define only one of these.

Besides the known terms Fm, Fn, bm, and bn, also the dependent variable un

corresponding to different volume Vn figures in the condition (2.24). Thus, the problem

of finding suitable elastic deformation leads to a system of coupled problems of static

equilibrium introduced above. The solution is a set of displacement fields ũm(x̃).

The similar approach was presented in [3] to evaluate the strain fields in the so

called wedge microstructure, but the geometry of the wedge microstructure is simple.

It does not break up after the applying transformation strains, only a gap arises in the

body. To “seal” that gap the single problem of static equilibrium must be solved.

2.2.2 Geometry Parametrisation and Optimisation

We are searching for minimum of the total free energy with respect to two material

parameters and six geometric parameters. The dimensions of the specimen are fixed

as well as the position of the microstructure. All parameters are defined for the X

microstructure in the same way as for the lambda microstructure. The first two pa-

rameters (λ1, λ2) stand for the volume fractions of the common variant in both twinning

systems.
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Figure 2.5: Geometric parameters of the microstructures

An important property of the both microstructures is a direction of the intersecting

line of all interfaces, since this is not well defined by the predictions of the classical

theory. Thus, the second two parameters define the direction of the intersecting line p.

The direction is given by two angles θ and ϕ (see Fig. 2.5), which describe the deviation

of this line from the direction p0 of the intersection of the habit planes predicted by

the minimum incompatibility criterion. Position of the line is given by one fixed point

preventing the microstructure from moving through the specimen as a whole.

Remaining parameters are the four angles (γ1, γ2, γ3, γ4) describing the orientations

of two habit planes and two martensite–martensite interfaces (see Fig. 2.5). These

angles represent deviations of respective planes from the reference planes, which are

the planes closest to the corresponding minimum incompatibility planes and containing

intersecting line given by p. The reference plane normals are obtained as a vector triple

product p×(p×n0), where n0 is a normal vector of the minimum incompatibility plane.

When the volume fractions are set to the values obtained from the classical theory

and all six geometric parameters are set to zero, the habit planes are exactly the habit

planes predicted by the classical theory and the martensite–martensite interfaces are

the best approximations (in the sense of included angle) of the classical twinning planes,

which intersect with the habit planes in one common line.

Since the objective function for the optimisation is in general nonconvex, the selec-

tion of the proper starting point is crucial. As mentioned above, it is supposed that the

sought minimum lies close to the configuration predicted by the classical theory. Thus,

as a starting point we set the volume fractions to values obtained from the classical

theory and all geometric parameters are set to zero. As a optimisation algorithm the

sequential quadratic programming algorithm with bounds is used. The bounds ensure
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that there is only one minimum within the searched range. When the optimal solution

is found, we check that there are no active constraints.

2.3 Mobility of the Microstructure

In this section we try to construct a model describing the evolution of the observed

microstructures, which should explain why such incompatible microstructures form.

Several classical approaches to model the martensitic phase transition are briefly

discussed in [9], and [19]. They are mostly too general and none of them is able to deal

with the particular microstructure. Latest published models involving microstructures

([12], [16]) do not try to predict which microstructure forms, but have a predefined

type of the microstructure “imprinted” and describe the evolution of the parameters of

this microstructure under various external conditions. This is also the way we follow.

To ensure relative simplicity of implementation we decided to base the model on

suitable variational principle. The right choice strongly depends on the way how the

dissipation mechanism is understood and described. In this aspect our model differs

from the most of the others.

2.3.1 Spontaneous Isothermal Motion of non-Equilibrium Microstructures

In the quasistatic theory of evolution of martensitic microstructures under time depen-

dent external loading (either thermal or mechanical), the dissipation is usually con-

sidered as strictly rate-independent, i.e. the dissipation rate is considered as 1-degree

homogeneous in the time derivative of the volume fraction of the transformed phase

(see [12] for more details and for an exhaustive list of relevant references). Such ap-

proach enables us to see a close analogy between the martensitic phase transition and

plasticity, and to use the Hill’s principle of maximal dissipation (principle of maximal

plastic work [8]) to describe the evolution of the microstructure.

In [16] the problem of quasistatic loading and the related dissipation processes is

discussed in more detail. The authors consider three different time scales coming into

play. At the slowest scale, where the external loading is applied, the material moves

through a sequence of quasi-stable states given by actual external conditions. The

dissipation processes at this scale are strictly rate-independent and the evolution of

the microstructure during some time increment ∆t can be sufficiently described by the

minimisation of the increment of the sum of the total Helmholtz free energy A and the

dissipated energy D as follows:

∆E = ∆A+ ∆D → min , (2.25)
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where the minimisation is done over all admissible changes of the microstructure.

However, there are two faster time scales, where the dissipation processes can be

more general. At the fastest scale (processes at speeds comparable to propagation

of elastic waves, namely the dynamic jumps of the lattice between the austenite and

martensite or between the martensite variants) the main dissipative mechanism is the

emission and consequent attenuation of acoustic waves (so called acoustic emission,

see [15]). This contribution to the final dissipated energy can be considered as negligi-

bly small (see the acoustic emission experiments in [19], documenting that the emission

activity is maximal during the nucleation and annihilation of the interfacial microstruc-

ture, but that there are nearly no acoustic waves emitted during the stable propagation

of the microstructure through the specimen).

On the contrary, a significant amount of energy is dissipated at the middle time

scale, which is the scale capturing the spontaneous change of the microstructure due

to a sudden change of external loadings. At this time scale, the loading parameters

(temperature, applied stress) are kept constant defining a new equilibrium state towards

which the system evolves. This is exactly the process we want to model (described in

detail in [20]), where the specimen in martensite is put into a warm water bath (i.e.

the temperature is suddenly increased and then kept approximately constant), which

induces the formation and propagation of the microstructure in the material. The

dissipative processes at this time scale (thermal effects, viscous dissipation) are, in

principle, rate-dependent, although they appear as rate-independent at the slowest

time scale.

Since there are no varying external conditions in our case, “nothing happens” at

the slowest time scale, so we must describe the modelled process at the faster one. This

implies that the considered dissipation must be rate-dependent. Then the speed of the

microstructure evolution is controlled by the dissipation rate.

We can consider that the energy dissipated during such process is equivalent to the

work done by dissipative (or friction-like) forces, and formulate a variational condition

analogous to (2.25) in rates

Ė = Ȧ+
1
2

∫
V
σdiss.

ij ε̇ij dx→ min , (2.26)

where σdiss.
ij is a dissipative stress tensor and the finite strain tensor ε is defined as

ε =
1
2

(∇ỹT∇ỹ − I) . (2.27)

Thus, it involves the inelastic transformation strains as well as the elastic strains.

The minimum is sought not only with respect to all admissible spatial evolutions

εij(t) of the microstructure but also with respect to the velocities ε̇ij(t). In fact, the
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extremal condition (2.26) can be understood as a particular form of the Biot’s principle

(see [8]) for rate-dependent dissipative systems.

2.3.2 Mobility Modelling of the Lambda and X Microstructures

To describe the state of the microstructure the parametrisation introduced in 2.2.2 is

used providing two extra parameters X = [xh, xv] defining the intersecting line position.

These parameters stand for the coordinates of the crossing point in the face A in the

local coordinate system attached with the lower left corner of the face. Hence, all

properties of the microstructure depend on the ten parameters (xh, xv, λ1, λ2, θ, φ,

γ1, γ2, γ3, γ4).

The dissipative tensor σdiss.
ij can be considered in a general form

σdiss.
ij = ηijklε̇kl , (2.28)

where ηijkl is a viscosity tensor, see [14]. Since there are no experimental data for

constants ηijkl, the simple isotropic form is used. For an isotropic body this tensor has

only two independent components, so the dissipative tensor can be written in the form

σdiss. = µV
tr ε̇
3

I + µS

(
ε̇− tr ε̇

3
I
)
, (2.29)

where the bulk viscosity µV is related mostly to the thermoelasticity and the shear

viscosity µS is related to the viscous motion of dislocations and twin boundaries.

For simplicity, we will consider the values of µV and µS to be the same both inside

all individual phases (martensite, twinned martensite, austenite) and at the interfaces.

Thus, the finite jumps in εij at the interface planes ensure that most of the energy is

dissipated by the moving interfaces.

The temperature is fixed above the transformation temperature. Thus, the total

free energy A is assumed in the form (2.17), where for the elastic part We the relation

(2.18) holds and where the transformation part W is assumed to be a linear function

of the martensite and austenite volumes Vm and Va:

A = W + Ee = cmVm + caVa + Ee . (2.30)

Putting previous equations together we obtain (keep in mind that all properties are

functions of the microstructure parameters defined above)

Ė = Ȧ+ Ḋ = cmV̇m + caV̇a + Ėe +
1
2

∫
V

(
µV

ε̇kk

3
δij + µS

(
ε̇ij −

ε̇kk

3
δij

))
ε̇ij dx =

= cmV̇m + caV̇a + Ėe +
1
2

∫
V

µV − µS

3
(tr ε̇)2 + µS tr

(
ε̇2
)

dx→ min . (2.31)
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The constants cm, ca, µV , and µS remaining to be supplied are discussed later in

3.3.1. The objective is to find the set of the functions (xh(t), xv(t), λ1(t), λ2(t), θ(t),

φ(t), γ1(t), γ2(t), γ3(t), γ4(t)), which minimises Ė (or in the other words, maximises

the energy release rate). We are particularly interested in the first two parameters

describing the motion of the whole microstructure.

Discretisation and Solution

To solve the problem (2.31) the time is discretised and the time derivatives are replaced

by finite differences:

Ė ≈ An+1 −An

∆tn+1
+

+
1
2

∫
V

µV − µS

3

(
tr
εn+1 − εn

∆tn+1

)2

+ µS tr

((
εn+1 − εn

∆tn+1

)2
)

dx =

= (An+1 −An)
1

∆tn+1
+

+
1

2(∆tn+1)2

∫
V

µV − µS

3
(tr (εn+1 − εn))2 + µS tr

(
(εn+1 − εn)2

)
dx→ min , (2.32)

where

An = A
(
xh(tn), xv(tn), λ1(tn), λ2(tn), θ(tn), φ(tn), γ1(tn), γ2(tn), γ3(tn), γ4(tn)

)
,

εn = ε
(
xh(tn), xv(tn), λ1(tn), λ2(tn), θ(tn), φ(tn), γ1(tn), γ2(tn), γ3(tn), γ4(tn)

)
,

∆tn+1 = tn+1 − tn .
(2.33)

With the given time step and two sets of microstructure parameters the equation

(2.32) approximates the value of Ė along the path from the first given state to the

second one. Thus, for the given state of the microstructure in the time tn and fixed

time step, we can find the state at the time tn+1 by minimisation of Ė with respect

to the new microstructure parameters. Reiterating this procedure we get the time

evolution of the microstructure. Every step comprises optimisation with respect to ten

parameters. With the a little trick the dimension of the problem can be shrank by one.

Providing

∆An+1 = An+1 −An ,

D̃n+1 =
1
2

∫
V

µV − µS

3
(tr (εn+1 − εn))2 + µS tr

(
(εn+1 − εn)2

)
dx

(2.34)

the equation (2.32) can be written in the form

Ė ≈ ∆An+1
1

∆tn+1
+ D̃

1
(∆tn+1)2

. (2.35)
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Notice that (2.35) is a quadratic function in the variable 1
∆tn+1

with coefficients ∆An+1

and D̃, which depends only on the microstructure parameters. If we are able to express

any of the sought parameters in the terms of ∆tn+1, then the optimisation with respect

to this parameter can be replaced by the optimisation with respect to ∆tn+1. The

formula for the optimal value of ∆tn+1 is obvious and can be easily derived from the

equation (2.35).

Let us rewrite the parameters describing the crossing point position at the time

tn+1 in the following way:

xh,n+1 = xh,n + vn+1∆tn+1 cos(ηn+1) = ∆xn+1 cos(ηn+1)

xv,n+1 = xv,n + vn+1∆tn+1 sin(ηn+1) = ∆xn+1 sin(ηn+1) .
(2.36)

The sought parameters xh,n+1 and xv,n+1 were replaced by the vn+1, which has a

meaning of scalar velocity of the crossing point, and ηn+1, which is an angle describing

the direction of movement of the crossing point. The ∆xn+1 = vn+1∆tn+1 denotes the

spatial step length. With the fixed time step the velocity is given by the spatial step

length, but for the fixed ∆xn+1 = ∆x, the velocity is fully determined by the time

step ∆tn+1. Hence, with the fixed spatial step length the optimisation with respect

to parameter xh,n+1 and xv,n+1 can be replaced with the optimisation with respect to

angle ηn+1 and the time step ∆tn+1.

The optimal value of the time step is found as an argument of the minimum of the

quadratic function (2.35):

∆tn+1 = − 2D̃n+1

∆An+1
. (2.37)

Eliminating ∆tn+1 from (2.35) yields

Ė ≈ −(∆An+1)2

4D̃n+1

. (2.38)

Recall that provided fixed step length ∆x the quantities ∆An+1 and D̃n+1 depend on

the initial state, on the direction ηn+1, and on the remaining eight parameters. Thus,

the optimisation has to be done with respect to nine parameters now. We employ the

same SQP algorithm as in the previous section.

Substituting (2.37) to (2.35) an interesting relation can be obtained:

∆An+1

∆tn+1
+ 2

∆Dn+1

∆tn+1
= 0 . (2.39)

It means that for the optimal choice of time step length (i.e. the velocity of the motion)

the dissipation rate is a minus half of the free energy change rate. And thus, the total

energy change rate is a half of the free energy change rate:

Ė ≈ 1
2

∆An+1

∆tn+1
. (2.40)
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Notice that the term on the right hand side of the equation (2.38) is always non-

negative. It looks like that total energy E never increases for any virtual change of

the microstructure (constrained to the fixed step length ∆x), but it is not true. The

admissibility of particular virtual change is governed by the equation (2.37). If the

total free energy A increases or remains constant with the given virtual change, the

optimal time step length becomes negative or “infinite”, which is meaningless. Hence,

the motion is possible if and only if the total free energy decreases. Therefore, for the

purpose of optimisation we use the sgn(∆tn+1)Ė as the objective function.





Chapter 3

Implementation and Results

This chapter presents numerical results for introduced models and describes some im-

plementation details. All computations were done in MATLAB environment in connec-

tion with COMSOL Multiphysics FEM software package, which provides a bidirectional

scripting interface to MATLAB.

3.1 Elastic Strain Evaluation

The evaluation of the elastic strain field and stored elastic energy for the given geometry

of the microstructures forms an integral part of all computations. The problem defined

in 2.2.1 is solved by the finite element method. Only one additional boundary condition

is set. Since the solution of the problem is unique up to arbitrary rotation, we fix the

base of the specimen.

3.1.1 Model Implementation in COMSOL Multiphysics

The implementation in COMSOL Multiphysics (see [1] for documentation) is quite

straightforward. We use Solid, Stress-Strain application mode defined in Structural

Mechanics module with most of settings set to default. This mode is intended to

solve 3D solid deformation problems. The used variational formulation is based on the

principle of virtual work.

The initial geometry determined by the microstructure parameters is generated by

set of MATLAB scripts. As a result the separate four geometric objects are obtained,

which represent different parts of the microstructure after the inelastic deformation

according to the macroscopic deformation gradients (see 2.2.1).

47
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The COMSOL Multiphysics Use Assembly option enables us to work with separate

volumes and to generate an independent mesh for each one. This allows displacement

field to be discontinuous over the interfaces. The coupling boundary conditions (2.24)

are set through the Extrusion Coupling Variables option.

Since we are working in the regime of small deformations (i.e. linear elasticity), the

system of equations obtained by the FEM discretisation is linear. To solve the system

we use a provided PARDISO direct solver implementing LU decomposition with nested

dissections preordering suitable for parallel computation.

3.1.2 Mesh Settings, Convergence

Since all parts of our geometry are of the similar length-scale, there is no need for any

extra fine mesh. On the boundaries, where the “glueing” condition is prescribed, it is

required that the affine transform, which maps these boundaries one to another, maps

also the corresponding boundary meshes one to another. Otherwise, the pointwise

conditions (2.24) give arise to some numerical artifacts. This requirement is fulfilled by

use of mapped mesh function. The mapped mesh is created according to profile finer

and converted to triangular mesh. The rest of the geometry is meshed with tetrahedral

elements according to profile fine.

The resulting mesh comprises approximately 5,000 elements. Since the Lagrange

cubic finite elements are used, the obtained mesh has about 80,000 degrees of freedom.

When the mesh was refined by decreasing the element size by the factor of two,

the stored elastic decreased by less then 0.25%. At the same time it was checked that

the accuracy is sufficient to catch a feasible geometric parameters change. Thus, these

settings are used in all the following computations.

3.2 Modelling of the Stable Microstructures

The proposed modified model of stable martensitic microstructures 2.2 was used to

model observed lambda and X microstructure. The optimal geometry was computed

for the crossing point positions taken from the experiments.

3.2.1 Optimisation Settings, Convergence

The stored elastic energy was minimised with respect to volume fractions and geometric

parameters introduced in 2.2.2. We used the MATLAB Optimization Toolbox function

fmincon(), which solves the problem by sequential quadratic programming algorithm

with BFGS hessian update.
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angle � face A B C

∆(mAB,mX) 0.6◦ 0.3◦

∆(mAB,mCD) −2.6◦ −3.6◦

∆(nAB,mCD) −2.2◦ −0.3◦

∆(nAB,mX) −0.9◦ −1.9◦

∆(mAB,nAB) −1.5◦ −2.8◦

∆(mCD,mX) −2.4◦ 0.5◦ −2.1◦

∆(mAB, edge) 1.0◦ 1.3◦

∆(nAB, edge) −0.1◦ −0.2◦

∆(mCD, edge) 3.5◦ 1.0◦ 1.4◦

∆(mX , edge) 1.2◦ 1.6◦ 0.6◦

Table 3.1: Differences between the computed and measured angles for the lambda
microstructure

The optimal geometric parameters were sought within the interval (−2◦ , 2◦ ), for

the volume fractions we set the lower bound to 0.25 and upper bound to 0.35. Ini-

tial values were zeroes for the geometric parameters and 0.3008 for the both volume

fractions (this value is provided by the classical theory).

The minimal step length for the finite differentiation was set to 0.01. Since the

objective function is very sensitive to volume fractions parameters, these were rescaled

by the scaling factor 100. Objective function value tolerance for the stopping criterium

was set to 0.0005 mJ, which is approximately 0.01% of the optimal value.

In all cases the optimisation stopped within 14 iterations, when projected objective

function change was less than given tolerance. Found point was checked for optimality

also manually by evaluating all forward and backward finite differences in that point

with step length 0.005.

3.2.2 Results

For the observed lambda microstructure the optimal volume fractions found are 0.2955

for the {A:B} twinning system and 0.2977 for the {C:D} twinning system. These

values are slightly less than the values predicted by the classical theory. The optimal

geometric parameters are ϑ = 0.36◦ , φ = 0.22◦ , and gammas (0.08◦ , −0.12◦ , −0.32◦ ,

0.38◦ ). The deviations are small, so the configuration predicted by the classical the-

ory lies very close to the energetical optimum. Differences between the optimal and

observed angles are summarised in Tab. 3.1. Since the twinned regions are treated

as homogeneous, the orientation of the twinning plane in the {C:D} twinning system

cannot be predicted. See Fig. A.3 for graphical representation of the results, where the

original optical micrographs are overlaid by the computed geometry. In the Fig. A.5
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angle � face A B C D

∆(mAB,nCB) 3.0◦ 3.0◦

∆(mAB,mCB) −4.0◦ −3.4◦

∆(nAB,nCB) 1.2◦ 1.2◦

∆(nAB,mCB) 2.3◦ 1.3◦

∆(mAB,nAB) −1.8◦ −1.7◦ −1.1◦

∆(mCB,nCB) −1.0◦ 0.3◦ −0.1◦

∆(mAB, edge) 1.2◦ 1.2◦ −1.4◦

∆(nAB, edge) 0.4◦ 1.1◦ −0.6◦

∆(mCB, edge) 2.4◦ 0.1◦ 2.9◦

∆(nCB, edge) −1.8◦ 0.3◦ −1.8◦

Table 3.2: Differences between the computed and measured angles for the X microstruc-
ture

and Fig. A.6 the volume stress (one third of the hydrostatic stress tensor trace) and

the Tresca stress (represents shear stress) are plotted.

Situation for the X microstructure is similar. The found volume fractions are 0.2956

and 0.2947, ϑ = −0.81◦ , φ = 0.35◦ , and gammas (−0.10◦ , −0.25◦ , −0.60◦ , 1.09◦ ).

Again, the optimal configuration lies close to that predicted by the classical theory.

Differences between optimal and observed angles are summarised in Tab. 3.2. The

overlay of computed geometry and observed geometry can be seen in Fig. A.4. In the

Fig. A.7 and Fig. A.8 the volume stress and the Tresca stress are plotted. Notice that

in the case of the X microstructure the stresses are significantly higher than in the

lambda microstructure. But this was expected, since Fig. 2.3 shows that the geometric

misfit in the X microstructure is noticeably larger.

Comparing table Tab. 2.3 with Tab. 3.1 and Tab. 2.5 with Tab. 3.2 we can see that

the predictions obtained from our model are not much better than predictions of the

classical theory. In fact, the mean differencies are somewhat higher. It is supposed

that this issue is related to many simplifications done in the model. Particularly, the

twinned regions were homogenised, and all interfaces are assumed to be exact planes,

which may not be true.

3.3 Modelling of the Microstructure Mobility

Here we present results based on the model of microstructure mobility introduced in 2.3.

First, we examine mobility of the both lambda and X microstructures in five different

configurations by evaluating the energy release rate and velocity for the various crossing

point moving directions. Next, some results of optimisation procedure proposed in 2.3.2
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parameter value

ca 0 J.m−3

cm 5× 107 J.m−3

µV 3.36× 1010 Pa.s
µS 1.2× 109 Pa.s

Table 3.3: Model parameters

describing microstructure evolution are presented.

3.3.1 Model Parameters

The model depends on four yet unspecified constants—the transformation parts of

the free energy density of the martensite and austenite (cm, ca), and two viscosity

constants (bulk viscosity µV , shear viscosity µS). Unfortunately, there are no (or poor)

experimental estimates of these constants. Thus, we choose them so that the model

fits observations in the main properties.

The energy densities cm and ca are defined up to an additive constant and the

model depends on their difference only, thus we set ca = 0 J.m−3. The shear viscosity

µS related to motion of dislocations is chosen to be approximately ten times smaller

than the bulk viscosity. The absolute values of the constants were fitted to observed

crossing point movement velocity and expected latent heat absorption rate, which was

supposed to be higher but comparable to the dissipation rate (according to infrared

microscopy observations in [19] the specimen is undercooled by the microstructure

motion). Here, the velocity (about 2 mm.s−1) was taken from [19] and the laten heat

of the transition was taken from [2]. See Tab. 3.3 for obtained parameters.

Notice that the time derivative of the first term of (2.30)

Ẇ = cmV̇m + caV̇a (3.1)

is 1-degree homogeneous in transformed volume change rate, since V̇m = −V̇a. Thus,

in fact, it represents not only the change of the transformation part of the free energy,

but it can also comprise the rate-dependent part of the dissipation.

3.3.2 Microstructure Mobility Investigation

To get an idea of the nature of the total energy change rate and crossing point velocity

(v = ∆x
∆t ) dependence on the motion direction we evaluated these quantities according

to (2.38) and (2.37) for one step in all admissible directions from the given starting
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Figure 3.1: Total energy change rate profile for various starting configurations

configurations. In addition, also the total energy decrement values ∆E = Ė∆t were

computed (according to (2.40) it is equal to a half of the free energy decrement).

To obtain starting configuration of the microstructure we ran the optimisation pro-

cedure from 2.2.2 for the chosen crossing point position. We chose five distinct crossing

point positions in the same distance from the bottom (shorter) edge of the face A (the

distance was set to 35% of the face length), but with different distances from the left

edge of the face A. The distances are 25%, 35%, 50%, 65%, and 75% of the face width

(so the 0% means the position exactly at the left edge and 100% stands for the position

at the right edge of the face A).

The spatial step length ∆x was set to 10% of the face A width, other microstructure

parameters were fixed. The observed quantities were evaluated for spatial step direction

η running from 0◦to 180◦with 1◦step. Here, the 0◦means motion towards the right edge

of the face and 90◦means motion parallel with the longer edges towards the martensite

region. In other directions the volume of the austenite always decreases, which nearly

always leads to free energy increase and thus to inadmissible motion.

Results

The plots of the all results for the both microstructures under investigation can be seen

in Fig. 3.1, Fig. 3.2, and Fig. 3.3. Since the computed data were little noisy, they were

smoothed by moving average method with 3◦ window size.

Although the configurations are not symmetric, all lines intersect at 90◦ direction.

This is because of with this direction the amount of transformed and reoriented material

is the same regardless of the crossing point position. The changes of the stored elastic

energy and the elastic strains are incomparably smaller than the changes of the total
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Figure 3.2: Crossing point velocity profile for various starting configurations
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Figure 3.3: Total energy decrement profile for various starting configurations

free energy and the inelastic transformation strains, thus the elasticity has a negligible

influence on the microstructure motion direction and speed . Hence, the change of the

free energy as well as the dissipation (and thus velocity) remains same for all crossing

point positions.

Another visualisation of the results is shown in Fig. 3.4 and Fig. 3.5, where the

absolute values of the quantities are plotted for the each crossing point position in

polar coordinates with the highest values marked (the quantities were rescaled and

shifted to fit in one plot). The smaller half circle (full line) denotes the zero value.

It is clearly visible here that the optimal direction (represented by the total energy

release rate maximum) is a result of “competition” between the direction of maximal

free energy decrease, which varies continuously with the crossing point position, and the

direction of minimal dissipation (i.e. maximal velocity), which changes abruptly, when
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Figure 3.4: Lambda microstructure mobility visualisation

the crossing point passes the middle position. Notice that the locations of the velocity

local maxima are constant for the given microstructure (clearly visible in Fig. 3.2).

The maximum velocity directions correspond to a crossing point motions along the

martensite–twinned martensite interface, since during this motion dissipation occurs

at two interfaces only, other two interfaces do not move.

But the most important observation is that according to our model the crossing

point tends to move away from the edges even though it means to form incompatible

microstructure with higher stored elastic energy.

3.3.3 Microstructure Evolution

The evolution of the all microstructure parameters is governed by the model from 2.3.2.

It comprises a ten-parametric optimisation of the total energy release rate objective
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Figure 3.5: X microstructure mobility visualisation

function at the each step.

The procedure is similar to that from the 3.3.2. For the chosen crossing point

starting position the optimal configuration of the stable microstructure was found and

this configuration was used as a starting configuration in the sequence describing the

evolution. Following members of the sequence were obtained by optimisation of the

objective function (2.38).

For the both microstructures the 10 successive configurations were computed with

two distinct starting points. The first starting configuration corresponds to the crossing

point positioned near the right edge of the face A (20%), the second corresponds to the

position near the left edge (80%). Distance from the bottom edge was the same as in

the previous section (35% of the face length).
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LambdaX X

Figure 3.6: Predicted crossing point paths during the microstructure evolution from
the two different starting configurations

Optimisation Settings, Convergence

The spatial step length was again set to 10% of the face A width. The initial point for

the each optimisation was defined by the previous configuration, where as the starting

direction η0 the 90◦ was taken. Since the volume fractions are not supposed to change

during the motion, we omit them in the optimisation, and thus optimise with respect

to eight parameters only. The directions ηn were sought through the full range from

-180◦ to 180◦ , except the λ1 the lower and upper bounds for the other parameters

was set to −4 and 4 respectively. In the case of the lambda microstructure and initial

crossing point position near the right edge the upper bound for the λ1 parameter had to

be raised to 8. Finite differentiation settings and function value tolerance remain same

as in 3.2.1, but now the value of 0.0005 J.s−1 equals to 2–3% of the objective function

optimal value. Also, the objective function was rescaled in the direction parameter

with a factor 1
100 , so that the minimal step for the finite difference evaluation is 3◦ .

Mostly the optimisation algorithm stopped within 5 iterations, but in some cases it

took up to 9 iterations, till the projected objective function change was less than the

given tolerance. Further optimality tests were not done.

Results

The projected paths in the face A of the crossing point position for the both microstruc-

tures and both starting configurations are shown in Fig. 3.6. As we can see, from the

both sides the crossing point moves forward and simultaneously away from the edge



3.3. MODELLING OF THE MICROSTRUCTURE MOBILITY 57

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

20%
80%

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Time [s]

C
ro
ss
in
g
p
o
in
t
v
e
lo
c
it
y

[m
m

.
s−

1
]

Lambda microstructure

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

20%
80%

2.2

2.4

2.6

2.8

3

3.2

3.4

Time [s]

C
ro
ss
in
g
p
o
in
t
v
e
lo
c
it
y

[m
m

.
s−

1
]

X microstructure

Figure 3.7: Crossing point velocity during the microstructure evolution from the two
different starting configurations

(i.e. the microstructure grows). Finally, the paths meet and continue almost in one

line parallel to the side edges. For the X microstructure this line passes through the

centre of the face, whereas in the case of the lambda microstructure the line distance

form the left edge is about 65% of the bottom edge length. This expectable behavior

follows also from Fig. 3.5 and Fig. 3.4.

The computed velocity of the crossing point is illustrated in Fig. 3.7. The behav-

ior of the velocity is in agreement with experimental observations reported in [19].

Within these observations the velocity drops, when the microstructure is fully formed

and further remains almost constant. This is because of low dissipation during the

microstructure formation, when only two interfaces are moving.

Unfortunately, the optimisation did not provide desirable results for the other mi-

crostructure parameters. Obtained orientations of the interfaces evolve discontinuously

and differ to much from the observed ones (sometimes the difference is higher than 5◦ ).

The first problem is caused by deficient accuracy of the objective function response to

the direction parameter, which breaks the line-search phase of the optimisation. We

impute the second issue to possibly different time scales, at which the whole microstruc-

ture motion (slow) and the elastic strains relaxation (fast) take place as proposed in

[16]. Thus, these two processes should not be mixed together in one optimisation

procedure.

We believe that both problems can be solved by replacing the current “big” opti-

misation with two nested optimisation procedures. The inner one minimises the stored

elastic energy with respect to orientations of the interfaces for the given microstruc-

ture position as in 2.2.2. Then, the outer one finds the optimal direction of motion
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according to maximal energy release rate principle as described in 2.3. For the outer

optimisation some derivative free algorithm can be chosen (e.g. some of the response

surface algorithms).



Conclusions

We proved that the briefly introduced mathematical theory of martensites developed

by Ball and James ([4]) does not allow us to handle observed lambda and X microstruc-

tures, since they are not global minimisers of the free energy. It was shown that requir-

ing only a local optimality we are able to describe these incompatible microstructures

and predict their parameters in a good agreement with the experiments.

We constructed a model governing the spontaneous evolution of the microstructure

under the constant external conditions. The main difference from the most of the

other published models is in incorporation of the rate-dependent dissipation mechanism,

which enables us to describe fast evolution processes.

Due to the lack of the experimental data the model parameters had to be fitted to

observations. Therefore, the comparison of the model predictions with the experiments

is meaningless. However, we showed that our model is able to catch the main properties

of the microstructure evolution.

The model can be further improved by an implicit integration of additional physical

processes, especially the thermal effects. We believe that by supplying more information

from the shorter length scales we can also significantly extend the model validity range.
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Appendix A

Microstructure Micrographs, FEM

Modelling Results

All included colour images in full resolution are accessible online at:

http://files.glatz.cz/DP/app1/img.
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Figure A.1: Lambda microstructure (face A, B, and C)

Figure A.2: Lambda microstructure (face A, B, C, and D)
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Figure A.3: Comparison of real and computed geometry of the lambda microstructure

Figure A.4: Comparison of real and computed geometry of the X microstructure
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Figure A.5: Volume stress in the lambda microstructure
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Figure A.6: Tresca stress in the lambda microstructure
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Figure A.7: Volume stress in the X microstructure
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